25. D. Pradhan, M. Kumar, Y. Ando, K.T. Leung, “One-dimensional and two-dimensional ZnO

nanostructured materials on a plastic substrate and their field emission properties”, J. Phys.

Chem. C, vol. 112, no 18, pp. 7093–7096, 2008, doi: 10.1021/jp800799b

26. K. Yoo et al., “Low-temperature large-area fabrication of ZnO nanowires on flexible plastic

substrates by solution-processible metal-seeded hydrothermal growth”, Nano Converg., vol. 7,

no 1, 2020, doi: 10.1186/s40580-020-00235-6

27. A. Araújo et al., “Direct growth of plasmonic nanorod forests on paper substrates for low-cost

flexible 3D SERS platforms”, Flex. Print. Electron., vol. 2, no 1, pp. 1–12, 2017, doi: 10.1088/205

8-8585/2/1/014001

28. Y. Wang et al., “A low-temperature-operated direct fabrication method for all-solid-state

flexible micro-supercapacitors”, J. Power Sources, vol. 448, no October 2019, 2020, doi: 10.1016/

j.jpowsour.2019.227415

29. D. Shakthivel, F. Liu, C.G. Nunez, W. Taube, R. Dahiya, “Nanomaterials processing for

flexible electronics”, IEEE Int. Symp. Ind. Electron., no October, pp. 2102–2106, 2017, doi: 10.

1109/ISIE.2017.8001581

30. P. Rong, S. Ren, Q. Yu, “Fabrications and applications of ZnO nanomaterials in flexible

functional devices–A review”, Crit. Rev. Anal. Chem., vol. 49, no 4, pp. 336–349, 2019, doi:

10.1080/10408347.2018.1531691

31. C.C. Lin, S.K. Tsai, M.Y. Chang, “Spontaneous growth by sol-gel process of low temperature

ZnO as cathode buffer layer in flexible inverted organic solar cells”, Org. Electron., vol. 46,

pp. 218–225, 2017, doi: 10.1016/j.orgel.2017.04.006

32. W. Feng, J. Ma, W. Yang, “Precise control on the growth of SiC nanowires”, CrystEngComm,

vol. 14, no 4, pp. 1210–1212, 2012, doi: 10.1039/c2ce06569j

33. L.L. Low, F.K. Yam, K.P. Beh, Z. Hassan, “The influence of growth temperatures on the

characteristics of GaN nanowires”, Appl. Surf. Sci., vol. 258, no 1, pp. 542–546, 2011, doi: 10.

1016/j.apsusc.2011.08.071

34. Q.J. Wang, Y.-W. Chung, Encyclopedia of Tribology, vol. 150, no 1–2. Springer, 2013.

35. H.P. Phan et al., “Piezoresistive effect of p-type silicon nanowires fabricated by a top-down

process using FIB implantation and wet etching”, RSC Adv., vol. 5, no 100, pp. 82121–82126,

2015, doi: 10.1039/c5ra13425k

36. H.P. Phan et al., “The piezoresistive effect in top-down Fabricated p-type 3C-SiC nanowires”,

IEEE Electron Device Lett., vol. 37, no 8, pp. 1029–1032, 2016, doi: 10.1109/LED.2016.2579020

37. M. Shur, R. Gaska, A. Dobrinsky, M. Shatalov, “Deep ultraviolet light emitting diodes:

Physics, performance, and applications”, ECS Trans., vol. 61, pp. 53–63, 2014, doi: 10.1149/

06104.0053ecst

38. M. Shatalov et al., “High power AlGaN ultraviolet light emitters”, Semicond. Sci. Technol.,

vol. 29, p. 084007, 2014, doi: 10.1088/0268-1242/29/8/084007

39. I. Gaska, O. Bilenko, S. Smetona, Y. Bilenko, R. Gaska, M. Shur, “Deep UV LEDs for public

health applications”, Int. J. High Speed Electron. Syst., vol. 23, pp. 1–10, 2014, doi: 10.1142/

S0129156414500189

40. G. Cai, H. Luo, L. Guo, L. Li, S. Zhang, “MoOx-si heterojunction with wide-band-gap MoOx

contact layer in the application of low-intensity visible-light sensing”, Mater. Sci. Semicond.

Process., vol. 131, p. 105879, 2021, doi: 10.1016/j.mssp.2021.105879

41. V. Belwanshi, A. Topkar, “Quantitative analysis of MEMS piezoresistive pressure sensors based

on wide band gap materials”, IETE J. Res., pp. 1–11, 2019, doi: 10.1080/03772063.2019.1620641

42. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, “Nanowire ultraviolet photodetectors and

optical switches”, Adv. Mater., vol. 14, pp. 158–160, 2002, doi: 10.1002/chin.200214011

43. L. Liu, J. Zhao, G. Cao, S. Zheng, X. Yan, “A memristor-based silicon carbide for artificial

nociceptor and neuromorphic computing”, Adv. Mater. Technol., vol. 6, pp. 1–9, 2021, doi:

10.1002/admt.202100373

44. J. Li et al., “Conductively coupled flexible silicon electronic systems for chronic neural

electrophysiology”, Proc. Natl. Acad. Sci. U. S. A., vol. 115, pp. E9542–E9549, 2018, doi: 10.

1073/pnas.1813187115

Wide Bandgap Semiconductors

219